加入收藏 | 设为首页 | 会员中心 | 我要投稿 济源站长网 (https://www.0391zz.cn/)- 数据工具、数据仓库、行业智能、CDN、运营!
当前位置: 首页 > 站长资讯 > 动态 > 正文

更小的芯片制造艺术:行业正在向原子级进发

发布时间:2019-12-02 11:35:10 所属栏目:动态 来源:cnBeta
导读:副标题#e# 稿源:cnBeta.COM 在计算机芯片的世界中,许多参数都是 " 越大越好 "。比如更多的内核、更高的 GHz 主频、以及更大的浮点运算能力。不同的是,在工艺制程上,整个行业都在极力向更微小的目标前进。从 10nm 到 7nm,直至 5nm 和更小的尺度。但在深
副标题[/!--empirenews.page--]

稿源:cnBeta.COM

在计算机芯片的世界中,许多参数都是 " 越大越好 "。比如更多的内核、更高的 GHz 主频、以及更大的浮点运算能力。不同的是,在工艺制程上,整个行业都在极力向更微小的目标前进。从 10nm 到 7nm,直至 5nm 和更小的尺度。但在深入剖析原因之前,我们得先回顾下处理器的体系结构,以及工程师们是如何规划和设计芯片的。

更小的芯片制造艺术:行业正在向原子级进发

(题图 来自:TechSpot)

现在前头:本文主要讲述计算机芯片是如何被物理组装的,涉及制造的光刻部分则简略带过。

在芯片行业里,特征尺寸与制程节点紧密相关,详细内容可参考《如何设计 CPU》的第三章节内容。

芯片内部的每个执行单元,都可完成数学运算和数据存储,且性能上相当依赖于功效的工艺节点(特指同一制造商的每一次迭代)。

然而在营销实践中,这个术语用起来还是相当宽松的,取决于制造商爱用晶体管间的最小数值、或是平均数值。

在处理器世界中,任何改变都不会一蹴而就。更大的组件,意味着需要更长时间才能变更其状态、信号需要更长的传播时间、以及需要消耗更多的能量,更别提大芯片会占用更多的物理空间了。

更小的芯片制造艺术:行业正在向原子级进发

上图中展示了英特尔的三款旧 CPU,最左边的是 2006 年的赛扬、中间的是 2004 年的奔腾移动处理器、最右边的则是 1995 年的古老崩腾处理器。

三款芯片的制程节点分别为 65、90、350 nm —— 24 年前的产品,其关键部件的体积是 13 年前产品的五倍。

与此同时,较新的 CPU 内部有大约 2.9 亿个晶体管,而老崩腾只有它的百分之一(略超 300 万个)。功耗方面,2006 款赛扬处理器的 TDP 约 30W,老奔腾只有 12W 。

热设计功耗的增加,主要是随着电能在芯片中电路周围的流动,能量因各种过程而损耗,且其中大部分以热量的形式释放。尽管 30W 数倍于 12W,但新 CPU 的晶体管更是旧芯片将近百倍。

正因如此,采用较小的工艺节点,可使芯片更小、更快地切换晶体管、提升每秒的运算量、并减少能耗(热量)的散失。

更小的芯片制造艺术:行业正在向原子级进发

(图自:Peellden,Wikimedia Commons)

那么,为何我们不 " 一步到位 ",直接让所有芯片都使用最小的制程呢?说到这,就得提一下被称作 " 光刻 " 的生产流程了。

光掩膜会遮挡某些区域的光线,被允许穿透的光线会集中在一个小点上,然后与芯片制造中使用的特殊层发生反应,以确定各个零件的位置。

你可想象给胳膊拍了一张 X 光照片,骨头挡住了光线(起到了光罩的作用),而肌肉组织允许 X 射线的穿透,从而得出内部结构的图像。而光刻工艺的迭代,与光的波长有关。

更小的芯片制造艺术:行业正在向原子级进发

(图自:Philip Ronan,Gringer)

可见光(380 ~ 750 nm)只是光谱的一部分,其它还有无线电波、微波、X 射线等。你可从上图中见到光波的尺寸,大约在 10^-7 米左右(约 0.000004 英寸)。

言归正传,我们继续聊聊芯片的制造工艺,比如旧赛扬采用了 65nm 制程节点。那么,我们又该如何制造比光波还细小的零件呢?答案是采用紫外(EV)、甚至极紫外光刻(EUV)。

光谱图中,UV 始于 380nm 左右,直到 10nm 左右。英特尔、台积电、格罗方德等制造商,现在都已经摸到了极紫外(190 nm 左右)。

新工艺不仅能够将组件本身造得更小,且整体品质也可能更好,从而将各个零件紧密封装到一起,有助于缩小芯片的整体尺寸。

更小的芯片制造艺术:行业正在向原子级进发

(制造缺陷特写,图自:Solid State Technology)

对于制程节点的规模,不同企业有着不同的宣称。比如英特尔用 P1274 指代当前的 10nm 工艺,而台积电称之为 10FF 。

在将格罗方德售出之后,AMD 现在靠的是台积电代工,并且用上了 7nm 的量产工艺。需要指出的是,尽管一些最小特征的跨度仅为 6nm,但其它多数特征还是略大于此的。

为了让普通人了解 6nm 到底有多小,就必须提到硅原子本身的直径为 0.1nm 左右,而构成处理器主体的大部分硅原子的间距仅在 0.5nm 。换言之,单个晶体管在各个方面都覆盖了不到 10 个硅原子。

抛开令人难以置信的事实,EUV 光刻技术还是引发了许多严重的工程和制造难题。英特尔一直努力使其 10nm 产能赶上 14nm 的水平,格罗方德更是在去年停止了 7nm 及以下制程的研发。

问题在于,随着电磁波长的越来越短,其携带的能量就越来越大,导致有更大的潜在可能性会损坏正在制造的芯片。此外,小规模制造对所用材料的污染和缺陷也高度敏感。

(编辑:济源站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读